Lesson Planning Guide

Develop Lesson Plans for Instruction

Steps in developing NGSS-/standards-aligned, phenomenon-based lessons that are guided by the 5Es instructional model:

- 1. Complete the Lesson Plan Overview (Part A) to guide development of lesson plans.
- 2. Use the Lesson Plan Template (Part B) to create detailed lesson plans.

Lesson Overview Template (Part A)

1.a Select grade level NGSS Performance Expectations (PEs) or Topics, or district/state standards that support lesson-based student learning goals. For NGSS, PE color coding reflects its 3-dimensional learning components. Search the Evidence Statements for details on what students should know and do.

Middle School 7th Grade Science, to take place at Santiago Middle School in Orange, California.

MS-ESS2-3 Earth's Systems: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches.)

1.b Identify a lesson-based anchoring phenomenon that builds towards understanding of the PEs/standards, and is engaging and relevant to students. See more about phenomena and using phenomena with NGSS.

Anchoring phenomena: Volcano, sand, plate tectonics

1.c Ask a Driving Question, which is authentic and student-focused, that relates to investigating the PEs/standards and phenomenon. See more about Driving Questions and using Driving Questions with NGSS.

How is the Santiago Creek sand eroded from the Santiago Peak Volcano similar to or different from sand samples from around the world?

These materials were developed by CIRES Education & Outreach at the University of Colorado Boulder. <u>https://cires.colorado.edu/outreach/resources/planning-templates</u> This work is licensed under a Creative Commons Attribution 4.0 License https://creativecommons.org/licenses/by-nc/4.0/

1.d Unpack the 3-D learning components of the Performance Expectations/standards in the table below.

	For NGSS guidance, see the NGSS	Topic Arrangements and NGSS DCI	Arrangements. Use tools to unpack eac	h PE separately.
--	---------------------------------	---------------------------------	---------------------------------------	------------------

Science and Engineering Practices (SEP)	Disciplinary Core Ideas (DCI)	Crosscutting Concepts (CCC)
(skills)	(content)	(connections)
Analyzing and Interpreting Data: Analyze and	ESSC2.B Plate Tectonics and Large-Scale System	Patterns: Patterns in rate of change and other
Interpret data to provide evidence for	Interactions: Maps of ancient land and water	numerical relationships can provide information
phenomena.	patterns, based on investigations of rocks and	about natural systems
Students will analyze and interpret data from the	fossils, make clear how Earth's plates have	Explore the different rates of change and
Science of Sand website in provide evidence of	moved great distances, collided, and spread	geological timeframes among the different sand
plate tectonics and associated volcanism.	apart.	samples.
	Use maps to explore how subduction caused the	
	Santiago Peak Volcanics and compare to maps of	
	other volcanoes.	
1.e Determine students' prior knowledge about the	e lesson concepts. (e.g., pre-test, class discussion, exit	ticket, 1-minute report, KWL chart, survey, etc.)
Experience at a device in a place discussion becaused on the D		a the meal evel at a the substant such a The students

Engage students in a class discussion based on the Rock/Water Cycle Analogy Graphic Organizer comparing the rock cycle to the water cycle. The students studied the water cycle in the unit prior to this one.

1.f Identify Lesson Topics and Learning Goals: List main lesson concepts related to grade level PEs/standards that support student learning goals in figuring out the anchoring phenomenon; revise as needed.

1. Students will build on their understanding of the prior unit, the water cycle, as they begin to learn about the rock cycle.

2. Students will be able to read maps associated with the different tectonic processes.

2. Students will understand the tectonic history of the extinct volcano behind the school.

3. Students will understand how the eroded crystals (sand) from Santiago Peak compare with sand samples from elsewhere in the world.

1.g Select Lesson Resources: Identify resources to develop lessons that address the PEs/standards and investigate the anchoring phenomenon through a variety of sequenced activities; revise as needed (include title and URL).

Resources needed:

Analogy Graphic Organizer: Rock and Water Cycles

Sand sample from Santiago Creek

Electron Microgram of sand sample from Santiago Creek

Science of Sand website: https://www.scienceofsand.info/

Rocks to manipulate

₽ I I I I I I I I I I I I I I I I I I I	Lesson Plan Template (Part B)	
Grade and Subject	7 th Grade Science, Santiago Middle School, Orange, California	Instructional Time (min.)	45 minutes
Lesson Title (Topic)	The Rock Cycle, Plate Tectonics, and Volcanoes (Week-long Unit that immediately follows a prior week-long unit on The V	Water Cycle)	
Anchoring Phenomenon (copy from 1.b)	Anchoring phenomena: Sand and Volcanoes		
Driving Question (copy from 1.c)	How is the Santiago Creek sand eroded from the Santiago Peak Volcano s around the world?	imilar to or different fi	rom sand samples from

Lesson C	Lesson Overview		
Lesson Summary (description)	Lesson Topics and Student Learning Goals		
Teacher will assess prior knowledge and introduce concents of the rock	1. Students will build on their understanding of the prior unit, the water		
sample and plate tectonics using class discussion, the Water/Pock Cycle	1. Students will build on their understanding of the prior unit, the water		
Analogy Graphic Organizor, and rocks for students to manipulate. Teacher	2. Students will be able to read many associated with the different tectonic		
will introduce the sand sample from Santiago Creek, the electron micrograph	processes.		
of the sand sample, the map of Santiago Peak Volcanics, the Science of Sand	3. Students will understand the tectonic history of the extinct volcano behind		
website, description of 4 other domestic and international sand samples, and	the school.		
a basic overview of volcanoes and plate tectonics. Students will begin their	4. Students will understand how the eroded crystals (sand) from Santiago		
week-long lab group Sand Sample project by selecting the sand sample from	Peak compare with sand sample from elsewhere in the world.		
the Science of Sand website that they want to compare to the Santiago Creek			
Sand Sample. Students will end the lesson by completing a Quick Write on			
what they have learned.			
Lesson Resources Al	igned with Standards		
Lesson Resource	Resource Standards Alignment		
(copy from 1.g, sequenced with titles and links)	(copy from 1.d, standards notated, link optional)		
Analogy Graphic Organizer: Rock and Water Cycles	Analyzing and Interpreting Data: Analyze and Interpret data to provide		
	evidence for phenomena.		
	ESSC2.B Plate Tectonics and Large-Scale System Interactions: Maps of		
	ancient land and water patterns, based on investigations of rocks and		
	fossils, make clear how Earth's plates have moved great distances, collided,		
	and spread apart.		
Sand sample from Santiago Creek	ESSC2.B Plate Tectonics and Large-Scale System Interactions: Maps of		
	ancient land and water patterns, based on investigations of rocks and		
	fossils, make clear how Earth's plates have moved great distances, collided,		
	and spread apart.		
Electron Microgram of sand sample from Santiago Creek	Analyzing and Interpreting Data: Analyze and Interpret data to provide		
	evidence for phenomena.		
	ESSC2.B Plate Tectonics and Large-Scale System Interactions: Maps of		
	ancient land and water patterns, based on investigations of rocks and		

		fossils, make clear how E	arth's plates have moved great distances, collided,
		and spread apart.	a of shange and other numerical relationships can
		Patterns: Patterns in rat	e of change and other numerical relationships can
Science of Sand website		Analyzing and Interpretiv	an Data: Analyze and Interpret data to provide
https://www.scienceofsand.info/		evidence for phenomena	ig Data. Analyze and interpret data to provide
		ESSC2.B Plate Tectonics a	and Large-Scale System Interactions: Maps of
		ancient land and water p	atterns, based on investigations of rocks and
		fossils, make clear how E	arth's plates have moved great distances, collided,
		and spread apart.	
		Patterns: Patterns in rat	e of change and other numerical relationships can
		provide information abo	ut natural systems
Rocks to manipulate		ESSC2.B Plate Tectonics and Large-Scale System Interactions: Maps of	
		ancient land and water p	atterns, based on investigations of rocks and
		fossils, make clear how E	arth's plates have moved great distances, collided,
		and spread apart.	
	Teacher Pi	reparation	
Student Misconceptions		Scientific Terminology	
(potential student ideas that are problematic when engaging in the lesson)		(vocabulary named once students "figure out" concepts of lesson)	
Students struggle with the idea that rocks have not	always been like they are	Igneous rock	
now.		Sediments	
Students find it hard to believe that the area around their school and homes		Sedimentary rock	
is an extinct volcano.		Metamorphic rock	
Students struggle with the concept of plate tectonics.		Magma	
	Materials P	Preparation	
Student Needs	Group	Needs	Safety & Technology Needs
(activity sheets, data packet, etc.)	(lab equipment, grou	ip data packets, etc.)	(unsafe materials, websites cued, etc.)
Chromebook	Santiago Creek sand Sam	ole	Science of Sand website cued
Rocks	Science of Sand website		
Analogy Graphic Organizer	Geological map of area		

Supporting	Information
References	Background Reading
(links to cite sources of data, images, websites, etc.)	(for teachers and/or students)
Science of sand website	Textbook on the rock cycle and plate tectonics
Geological map of area	Analogy Graphic Organizer

Complete the 5E Instructional Model section(s) that are relevant to the lesson:

Engage: Interest in a concept is generated and students' current understanding is assessed. ACTIVATE interest: Introduce anchoring phenomenon and driving question.
• Engages students in the concepts through a short activity or relevant discussion
Connects students' past and present experiences
Creates interest and generates curiosity
Uncovers students' current knowledge and misconceptions
• Initiates students' investigation into the anchoring phenomenon based on an observation, problem, or question
Phenomenon-based Driving Questions (questions students are likely to ask about the lesson topic)
How can we be living on a volcano?
How can sand from our local dry creek bed be eroded from a volcano?
How can sand from other parts of the world be similar to ours?
Lesson Activities (experiment, demonstration, video, visualization, reading, etc., coherently sequenced to help build understanding of PE/standard) For each activity, provide details of the procedure including timing, teacher guidance, student prompts, strategies for discussions and differentiation, etc.
 Students will engage in a brief class discussion using the Water/Rock Cycle Analogy Graphic Organizer as a basis for the teacher to assess the students' understanding of the basics of the Rock Cycle and Tectonic Processes. Teacher will hand out a variety of different types of rocks for students to manipulate during the lesson. Students will be asked to discuss in small groups several questions: 1) Do you think these rocks always were the same as they are now? 2) Where do you think these rocks came from? 3) How would you figure that out?

3. Teacher will provide a sand sample from Santiago Creek for each lab group.

4. Teacher will project the Santiago Creek Sand Sample and map of Santiago Peak Volcanics on the wall for use during the activity.

5. Teacher will provide preliminary brief direct instruction on volcanoes, plate tectonics, and the geological history of Santiago Peak. Teacher will use the Science of Sand website as a resource in this instruction. Teacher will use samples from Mt. Hood, Giardini Naxos, Solheimajokull Glacier, and Guana River State Park to demonstrate how to do the exercise.

6. Students will begin the Science of Sand Sample project that they will be working on all week. Today, each lab group will use their school-provided chromebook to identify one sample from the Science of Sand website (other than the sand samples used by the teacher in the demonstration) that they would like to study. Half of the students will select a domestic sample, while the other half will select an international sample.

Formative Assessment (activity sheet, Venn diagram, summary, exit ticket, think-pair-share, etc. to check for understanding of lesson concepts)

Students will answer the following question as a Quick-Write at the end of the class session: How is it possible that the sand from Santiago Creek could contain remnants of an extinct volcano?

Consensus Discussion (claims, evidence, and reasoning on what students figured out in this lesson)

Opening discussion on the similarities and differences between the water and rock cycle using the Analogy Graphic Organizer (#1 above).

Discussion on the rock that each student has been provided (#2 above).

Lab group discussion to select the Science of Sand sand sample to be used for the activities for the rest of the week (#6 above).

New Questions and Next Steps (student-driven questions, ideas on what to investigate in the next lesson and how to investigate it, etc.)

Student-driven Questions:

How is the Santiago Creek sand like the sand sample we picked on the Science of Sand website?

How are we going to figure out how the Santiago Creek sand is similar to and different from the sand sample we picked from the Science of Sand website? How does plate tectonics make this all work?

What does any of this have to do with the Rock Cycle?

Lessons for the rest of the week:

Over the next 4 days, students will research their selected sand sample and compare it to the Santiago Creek sand sample. Other lessons this week will be focused on helping the students to understand the Rock Cycle. At the end of the week on Friday, each lab group will present their findings to the rest of the class.

